数学家与函数论文
发布时间:2024-02-21 22:03  

数学家与函数论文

函数小史数学史表明,重要的数学概念的产生和发展,对数学发展起着不可估量的作用,有些重要的数学概念对数学分支的产生起着奠定性的作用.我们刚学过的函数就是这样的重要概念.在笛卡尔引入变量以后,变量和函数等概念日益渗透到科学技术的各个领域.纵览宇宙,运算天体,探索热的传导,揭示电磁秘密,这些都和函数概念息息相关.正是在这些实践过程中,人们对函数的概念不断深化.回顾一下函数概念的发展史,对于刚接触到函数的初中同学来说,虽然不可能有较深理解,但无疑对加深理解课堂知识、激发学习兴趣将是有益的.最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨.最初莱布尼茨用摵 龟一词表示幂,如x,x2,x3都叫函数.以后,他又用函数表示在直角坐标系中曲线上一点的横坐标、纵坐标.1718年,莱布尼茨的学生、瑞士数学家贝努利把函数定义为:“由某个变量及任意的一个常数结合而成的数量.”意思是凡变量x和常量构成的式子都叫做x的函数.贝努所强调的是函数要用公式来表示.后来数学家觉得不应该把函数概念局限在只能用公式来表达上,只要一些变量变化,另一些变量能随之而变化就可以,至于这两个变量的关系是否要用公式来表示,就不作为判别函数的标准.1755年,瑞士数学家欧拉把函数定义为“如果某些变量:“以某一种方式依赖于另一些变量.即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数.”在欧拉的定义中,就不强调函数要用公式表示了.由于函数不一定要用式来表示,欧拉曾把画在坐标系的曲线也叫函数.他认为:“函数是随意画出的一条曲线。”当时有些数学家对于不用公式来表示函数感到很不习惯,有的数学家甚至抱怀疑态度.他们把能用公式表示的函数叫“真函数”,把不能用公式表示的函数叫“假函数’.1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数,在柯西的定义中,首先出现了自变量一词。1834年,俄国数学家罗巴契夫斯基进一步提出函数的定义:“x的函数是这样的一个数,它对于每一个x都有确定的值 “并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的“,这个定义指出了对应关系(条件)的必要性,利用这个关系以求出每一个x的对应值.1837年德国数学家狄里克雷认为怎样去建立x与y之间的对应关系是无关紧要的,所以他的定义是:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数.”这个定义抓住了概念的本质属性,变量y称为x的函数,只须有一个法则存在,使得这个函数取值范围中的每一个值,有一个确定的y值和它对应就行了,不管这个法则是公式或图象或表格或其他形式.这个定义比前面的定义带有普偏性,为理论研究和实际应用提供了方便.因此,这个定义曾被比较长期的使用着.自从德国数学家康托尔的集合论被大家接受后,用集合对应关系来定义函数概念就是现在高中课本里用的了. 中文数学书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把”funcion?译成一函数数?, 中国古代“函”字与“含”字通用,都有着“包含”的意思,李善兰给出的定义是:“凡式中含天,为天之函数.”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量.这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数.”所以“函数”是指公式里含有变量的意思.我们可以预计到,关于函数的争论、研究、发展、拓广将不会完结,也正是这些影响着数学及其相邻学科的发展.

《函数主线在各个章节是如何体现的》论文

一、函数的起源(产生)
十六、十七世纪,欧洲资本主义国家先后兴起,为了争夺霸权,迫切需要发展航海和军火工业。为了发展航海事业,就需要确定船只在大海中的位置,在地球上的经纬度;要打仗,也需知道如何使炮弹打的准确无误等问题, 这就促使了人们对各种“运动”的研究,对各种运动中的数量关系进行研究,这就为函数概念的产生提供了客观实际需要的基础。
十七世纪中叶,笛卡儿(Descartes)引入变数(变量)的概念,制定了解析几何学,从而打破了局限于方程的未知数的理解;后来,牛顿( Newton)、莱布尼兹(Leibniz)分别独立的建立了微分学说。这期间,随着数学内容的丰富,各种具体的函数已大量出现,但函数还未被给出一个一般的定义。牛顿于 1665年开始研究微积分之后,一直用“流量”( fluent)一词来表示变量间的关系。 1673年,莱布尼兹在一篇手稿里第一次用“函数”( fluent)这一名词,他用函数表示任何一个随着曲线上的点的变动而变动的量。(定义1)这可以说是函数的第一个“定义”。例如,切线,弦,法线等长度和横、纵坐标,后来,又用这个名词表示幂,即表示 x , x2, x3,…。显然,“函数”这个词最初的含义是非常的模糊和不准确的。
人们是不会满足于这样不准确的概念,数学家们纷纷对函数进行进一步讨论。
二、函数概念的发展与完善⒈以“变量”为基础的函数概念 在 1718年,瑞士科学家,莱布尼兹的学生约翰·贝奴里(Bernoulli,Johann)给出了函数的明确定义:变量的函数是由这些变量与常量所组成的一个解析表达式。(定义2)并在此给出了函数的记号φx。这一定义使得函数第一次有了解析意义。
十八世纪中叶,著名的数学家达朗贝尔 (D’Alembert)和欧拉( Euler)在研究弦振动时,感到有必要给出函数的一般定义。达朗贝尔认为函数是指任意的解析式,在 1748年欧拉的定义是:函数是随意画出的一条曲线。(定义 3)在此之前的 1734年,欧拉也给出了一种函数的符号f(x),这个符号我们一直沿用至今。
实际上,这两种定义(定义 1和定义 2)就是现在通用的函数的两种表示方法:解析法和图像法。后来,由于富里埃级数的出现,沟通了解析式与曲线间的联系,但是用解析式来定义函数,显然是片面的,因为有很多函数是没有解析式的,如狄利克雷函数。
1775年,欧拉在《微分学原理》一书的前言中给出了更广泛的定义:如果某些变量,以这样一种方式依赖与另一些变量,即当后面这些变量变化时,前面这些变量也随之而变化,则将前面的变量称为后面变量的函数。(定义 4)这个定义朴素地反映了函数中的辨证因素,体现了“自变”到“因变”的生动过程 ,但未提到两个变量之间的对应关系,因此它并未反映出真正意义上的科学函数概念的特征,只是科学的定义函数概念的“雏形”。
函数是从研究物体运动而引出的一个概念,因此前几种函数概念的定义只是认识到了变量“变化”的关系,如自由落体运动下降的路程,单摆运动的幅角等都可以是看成时间的函数。很明显,只从运动中变量“变化”观点来理解函数,对函数概念的了解就有一定的局限性。如对常值函数 ,不解释
十九世纪初,拉克若斯( Lacroix)正式提出只要有一个变量依赖另一个变量,前者就是后者的函数。 1834年 ,俄国数学家罗巴契夫斯基(Лобачевский)进一步提出函数的定义: x的函数是这样的一个数,它对于每一个 x都有确定的值,并且随着 x一起变化,函数值可以由解析式给出,这个条件提供了一种寻求全部对应值的方法,函数的这种依赖关系可以存在,但仍然是未知的。(定义 5)这实际是“列表定义”,好像有一个“表格”,其中一栏是 x值,另一栏是与它相对应的 y值。这个定义指出了对应关系(条件)的必要性,把函数的“对应”思想表现出来,而“对应”概念正是函数概念的本质与核心。
十九世纪法国数学家柯西( Cauchy)更明确的给出定义:有两个互相联系的变量,一个变量的数值可以在某一范围内任意变化,这样的变量叫做自变量,另一个变量的数值随着自变量的数值而变化,这个变量称为因变量,并且称因变量为自变量的函数。(定义 6)
1829年 ,狄利克雷( Dirichlet)给出了所谓狄利克雷函数: y=1 当 x为有理数时; y=0 当 x为无理数时。这个函数并不复杂,但不能用解析式来表示,这一思想的提出,正是数学由过去的研究“算”到以后研究“概念、性质、结构”的转变的开端。 1837年他对函数下的定义是:在某个变化过程中,有两个变量 x和 y。如果对于 x在某一范围内的每一个确定的值,按照某个对应关系, y都有唯一确定值和它对应,则 y称为 x的函数; x称为自变量。(定义 7)这个定义的优点是直截了当地强调与突出了“对应”关系,抓住了概念的本质属性,只须有一个法则存在,使得这个函数定义域中的每一个值有一个确定的 y值和它对应就行了,不管这个法则是公式或图像或表格或其他形式;其缺点是把生动的函数变化思想省略和简化掉了。
⒉以“集合”为基础的函数概念
函数的概念是随着数学的发展而发展的。函数的定义在数学的发展过程中,不断的改进,不断的抽象,不断的完善。十九世纪七十年代,德国数学家康托( )提出了集合论。进入二十世纪后,伴随着集合论的发展,函数的概念也取得了新的进展,它终于摆脱了数域的束缚向更广阔的研究领域扩大,使概念获得了现代化。
二十世纪初美国数学家维布伦( Weblan)给出了函数的如下定义:若在变量 y的集合与另一变量 x的集合之间,有这样的关系成立,即对 x的每一个值,有完全确定的 y值与之对应,则称 y是变量 x的函数。(定义 8)从这个定义开始,函数概念已把基础建立在集合上面,而前七个定义则是把基础建立在变量(数)上的。
随着时间的推移,函数便被明确的定义为集合之间的对应关系,其定义是: A和 B是两个集合,如果按照某种对应关系,使 A的任何一个元素在 B中都有唯一的元素和它对应,这样的对应关系成为从集合 A到集合 B的函数。(定义 9)此定义根据映射的概念,用“映射”观点建立函数概念,其又可叙述为:从集合 A到集合 B的映射 f: A→ B称为集合 A到集合 B的函数,简称函数 f 。(定义 10)以上三个定义,已打破数域的束缚,将集合中的元素改为抽象的,可以是数,也可以不是数,而是其它一切有形或无形的东西,如 X是所有三角形的集合, Y是所有圆的集合,则 f 可以是把每一个三角形映射成它的外接圆的映射。

对新函数定义可以这样理解:函数是一个对应(规则),对于某一范围(集合)的元素,按照这个对应(规则)确定另一个元素。这样函数概念从狭义的“变化”观点转化到较广义的“对应”观点,函数即是一个对应(规则)。
对函数概念用“对应”(“规则”)来理解比起最初阶段虽然揭示出了函数概念的实质,但它还不符合我们最低限度地使用未被定义的术语的意图。因为什么叫“对应”和怎样理解“规则”还需要定义,例如规则不同,那么是否函数也不同呢?如f(x)=x与f(x)=(1+x)-1当然是不同的规则但却定义了同一函数。
为了解决这一矛盾,二十世纪初,特别是在六十年代以后,广泛采用只涉及“集合”这一概念的函数定义,而集合作为原始概念是不予定义的,这样的定义是:设 A、 B是任意两个集合, f是笛卡儿集 A× B的一个子集,满足:①对任意的 a ∈ A,存在一个 b∈B,使得 (a,b)∈ f,②若 (a,b)∈ f, (a,c)∈ f则 b=c。则称 f为 A到 B的一个函数。记作 f:A→B。(定义11)这个定义利用“关系”这个概念,便给出了只涉及原始概念“集合”的函数的一般定义,即不需要用到“对应”,又避免了对“规则”的解释,只要集合理论适用一切数学领域,这样给出的函数定义总是适用的。它可称的上是最现代的定义了。
到此,“函数”最完善的定义(定义 11)已给出,作为数学中最基本的概念之一,已把基础直接建立在集合上面,即把函数看作是从一个集合到另一个集合的对应,它和“映射”实际上是一回事。
三、新旧两种定义的比较 比较新定义(把以集合为基础的函数定义称为新的定义方式,而以变量(数)为基础的定义称为旧的定义方式。)和旧定义,它们之间有两个重要的区别: ⑴旧定义是建立在“变量”这个基本概念上的,而新定义则建立在“集合”这个基本概念上。什么是变量呢?通常把它理解为在选定一个单位以后,可加以度量的东西,如长度、质量、时间之类,这种理解一方面太疏于笼统,只能通过举例来说明,而难于加以精确化;另一方面,由于涉及大小关系,嫌过于狭窄,无法体现应用上的普遍性。其次,即使什么是“量”的问题不存在,作为变量,它须在某一范围取值(不一定是数值),这一定范围实际上就是事先得假定的一个集合 A(它构成函数的定义域),所谓“变量取值 a”,实质上就是“ a属于 A”的一种变相迂回的说法。可见,在变量的概念中已蕴含集合的思想。
⑵旧定义中以“因变量”为函数,而新定义中则以“对应关系”为函数。函数概念的实质,主要的并不是因变量要随自便量“变”,而是两集合之间存在某种确定的对应关系。显然,新定义更能直接地揭示出函数的实质。

求一篇关于方程发展史,以及古今中外的数学家对方程的发展所做出的贡献,自选角度以方程为话题的论文

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程.而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?.”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大
贝祖(Bezout Etienne 1730.3.31~1783.9.27)法国数学家.少年时酷爱数学,主要从事方程论研究.他是最先认识到行列式价值的数学家之一.最早证明了齐次线性方程组有非零解的条件是系数行列式等于零.他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法.他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理.
1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究.
十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根.
十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》.
十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角.
十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现.后人所称的“杨辉三角”即指此法.
十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作.
1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方.
1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例.
1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”.书中提出的联立一次同余式的解法,比西方早五百七十余年.
1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作.
1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和.
1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法.
1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等).
十四世纪中叶前,中国开始应用珠算盘.
1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”.
1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学.
1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识.
1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式.
1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题.
1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论.
1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表.
1614年,英国的耐普尔制定了对数.
1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积.
1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分.
1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”.
1638年,法国的费尔玛开始用微分法求极大、极小问题.
1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就.
1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作.
1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”.
1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱.
1654年,法国的帕斯卡、费尔玛研究了概率论的基础.
1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学.
1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》.
1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究.
1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分.
1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法.
1670年,法国的费尔玛提出“费尔玛大定理”.
1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线.
1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》.
1686年,德国的莱布尼茨发表了关于积分法的著作.
1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究.
1696年,法国的洛比达发明求不定式极限的“洛比达法则”.
1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线.
1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》.
1711年,英国的牛顿发表《使用级数、流数等等的分析》.
1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》.
1715年,英国的布·泰勒发表《增量方法及其他》.
1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试.
1733年,英国的德·勒哈佛尔发现正态概率曲线.
1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机.
1736年,英国的牛顿发表《流数法和无穷级数》.
1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作.
1742年,英国的麦克劳林引进了函数的幂级数展开法.
1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面.
1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论.
1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一.
1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷.书中包括微分方程论和一些特殊的函数.
1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用.
1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法.
1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始.
1772年,法国的拉格朗日给出三体问题最初的特解.
1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学.
1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》.
1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表.
1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学.
1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多.
1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根.
微分方程:大致与微积分同时产生 .事实上,求y′=f(x)的原函数问题便是最简单的微分方程.I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动.他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组.用现在叫做“首次积分”的办法,完全解决了它的求解问题.17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型…….因而微分方程的研究是与人类社会密切相关的.当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等.但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题.
方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等.这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解.
但是在实际工作中,常常出现一些特点和以上方程完全不同的问题.比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等.
物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数.也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数.
解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式.但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方.
在数学上,解这类方程,要用到微分和导数的知识.因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程.
微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解.后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论.
常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的.数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具.
牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量.
微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.

打印此文 关闭窗口
很牛学术网 联系我们 文献下载器
返回顶部
扫一扫