先从数独的历史来认知数独:
数独很容易就可以学习却很容易上瘾的独立于语言的逻辑谜题,最近由风暴的整个世界。使用纯粹的逻辑和要求没有数学来解决,这些令人着迷的困惑提供无穷的乐趣与智力娱乐益智球迷的所有技能和年龄。
太难,也许是不可能的更要找出确切的时间和的地方原始概念的数独 (日语: 数独,sūdoku) 开始,但它似乎出现了第一个魔方相关。根据在线杂志收敛,魔术方块文章中所引用的帕特 Ballew 幻方的想法已转交阿拉伯人从中国人,很可能通过印度,在第八世纪。它讨论了由萨比特 · 伊本 · Qurra,他的亲和数,在早期的第九届方程式而闻名。在百科全书,由一群称为瓦尼铝萨的阿拉伯语学者编制约 990 显示的所有订单从 3 到 9 平方列表 (英语: 弟兄的纯度)。到那个时候出现没有一般的建设性方法。
1225 年,根据上面的引文,Ahmed al Buni 表明如何构造幻方使用一种简单的周边技术,但他不可能发现自己的方法。比格斯,指的由 Camman,本文建议由 Moschopoulos 所解释的方法有可能源于波斯和链接到那些由 al Buni 阐述了。Camman 实际上声称到波斯人,援引匿名的波斯手稿 (加勒特集合号 1057,普林斯顿大学) 知道由 Moschopoulos 给出了构造奇数阶幻方的两种方法。即便如此,该文档包含的例子并不显式方法。
伊斯兰文学幻方
根据国家医学图书馆的幻方 (在阿拉伯语作为济贫已知) 伊斯兰文学中第一次出现发生在 Jabirean 语料库-伊斯兰医学手稿作品组归因于贾比尔 · 伊本 · 扬 (称为在欧洲别),和一般认为 9 或早期公元前一世纪结束时编制了Jabirean 语料库建议幻方作为缓解分娩时的魅力。这些正方形组成九个单元格的数字 1 到 9 设有中心 5 这样内容的每个行、 列和两条对角线添加达 15。这些数字写在 abjad 字母-数字,和因为这个广场的四个角落包含字母 ba,dal,waw 或 u,和医管局 ,这个特定的广场被称为 buduh 广场。
到那个时候,幻方概念变得如此受欢迎的名字 buduh 本身被分配了魔力属性。在随后几年伊斯兰作家开发各种方法形成较大的幻方,哪个没有数字重复和汇总每一行和每一列和两条对角线都是一样。幻方与细胞 4 x 4 或 6 × 6 或 7 x 7 则特别受欢迎,与正在产生的 13 世纪的 10 × 10 正方形。
按照在线杂志收敛,所引用的 Ballew,也似乎幻方可能介绍给欧洲通过由亚伯拉罕本梅厄 · 伊本 · 拉 (c.1090 1167年),西班牙的西班牙犹太哲学家和占星家。本梅厄 · 伊本 · 以斯拉记翻译许多阿拉伯语作品为希伯来语和一般有幻方与数字命理学的浓厚兴趣。他游历了整个意大利和超越,并且可能已经负责幻方引入欧洲的人之一。
从对拉丁和希腊拉丁幻方
拉丁方的概念一直以来至少中世纪时期。从 13 世纪有时阿拉伯语手稿似乎功能第一的拉丁方,往往给出神秘的 Kabblahlic 意义。拉丁语平方米,在阿拉伯语作为济贫 majazi,被称为是包含单元格,每行和每列有相同的符号集是没有重复的幻方的区别一个正方形。
这一连串的事件继续的瑞士数学家和物理学家莱昂哈德 · 欧拉 (1707年-1783)。欧拉欧拉档案,在他纸 De quadratis magicis (关于幻方),在 1776 年 10 月 17 日,圣彼得斯堡学院提交表明如何构造幻方与一定数量的细胞,特别是 9、 16、 25 和 36。本文档中欧拉开始与希腊拉丁方和放对变量的值的约束,这样,其结果是幻方。名称拉丁方,然而,只有在后面的文章从上来欧拉关于拉丁名为研究和宣传 sur une 中篇小说 espece de 争吵神采 (英语: 关于新物种幻方的调查)。欧拉把拉丁文字母放入一个格子,并称之为拉丁方。后来,当他添加希腊字母,他叫它希腊拉丁方阵。
支出幻方的不同可能性他生活行为的最后一年,欧拉面临着特别的问题,结合 n 符号每两套,既不在行,也不在一条线一对符号发生两次。他证明了构建希腊拉丁 n 是奇数或 4 的倍数的方法。观察无秩序 2 广场存在,并且无法构建顺序 6 广场,他推测不存在时 n ≡ 2 (mod 4)。事实上,非存在订单 6 平方,是绝对在 1901 年由法国数学家加斯顿留住通过详尽列举的各种可能的安排的符号就可以证实。
58 年后,才在 1959 年和计算机的帮助,当两个美国数学家命名为玻色和 Shrikhande,发现欧拉猜想一些反例。在同一年,帕克发现反秩序 10 例。1960 年,帕克,玻色和 Shrikhande 表明欧拉猜想是虚假的所有 n ≥ 10。因此,希腊拉丁方存在的所有订单 n ≥ 3 接口除 n = 6。
数独的诞生我们所知
数独谜题是实际上的拉丁方; 特殊情况任何解决数独谜题是拉丁方。然而,9 × 9 标准数独设置额外的限制,3 × 3 子群还必须包含数字 1-9。
做脑力力量和博士让 Paul 拉哈耶在他科学美国人 2006 年 6 月"科学数独",第一次现代形数独谜题的故事由一位美国建筑师命名 Howard Garns,他从达盖特建筑退休后所引述的研究公司在印第安纳波利斯。Garns 花了欧拉拉丁方概念并将其应用到 9 × 9 网格中加上九 3 x 3 个子网格或框,每个都包含从 1 到 9 的所有数字。由 Garns 的第一个难题出现在 1979 年 5 月版的戴尔铅笔拼图和文字游戏下名称号码的地方,他们被称为仍由本公司直到今天。尽管戴尔没有出版 Garns 的名字对这一难题,脑力力量的研究它出现在名单的参与者在杂志封面上每当一些地方出现了,并缺席从所有其它版本。
也有其他指示 Howard Garns 第一个现代的数独游戏创造者的参考。根据维基百科的文章致力于 Garns,绘图员盖特建筑公司命名为乔治 · 威利告诉印第安纳波利斯每月:"我们有两个额外绘图板,有一天 Howard 坐在那边。我走过去,问他什么工作,他说,哦,游戏。它看起来像一个纵横字谜,但它有数字。它有小方块。我走在他身边和他掩盖它了。这是一个秘密。另一个同事在公司命名罗伯特 · 德曼证实作证他看到的他认为是一个纵横字谜的"草图"的故事。"我不是真的对它感兴趣了"辛德曼说,"但这是他的事。他只被喜欢这么做。Garns 在 1989 年 10 月 6 日死于癌症,并且埋在冠山公墓,印第安纳波利斯。
所以,数独游戏概念不发明了日本很多人可能会相信,但名称数独。1984 年无知者,日本领先益智创建的公司,发现的戴尔的一些地方,决定把他们介绍给他们日本益智球迷。谜题,其中第一名苏吉洼 Dokushin Ni Kagiru,("数字必须单"数字必须只出现一次") 迅速走红。
在 1986 年,经过增加了一些重要的改进,主要由制作对称图案和减少的数量给出线索,数独成为最畅销的日本的难题之一。主席的无知者实现数独谜题的唯一问题他们长的名字,Kaji Maki 缩写它数独-(苏 = 数字,位数字;Doku = 单,未婚)。今天有超过 60 万份的数独杂志每个月只在日本出版。
与以上所述,在所有的时间几乎没有人在欧洲知道或注意到数独谜题。
缓慢进展的老年痴呆症
在 2004 年年底 Wayne 古尔德,一个退休的 Hong 香港判断以及益智风扇和一个电脑程序员,参观了伦敦试图说服编辑的纽约时报 》 刊登数独谜题。古尔德,写计算机程序产生的不同的难度级别的数独谜题,要求没钱的谜题。时报 》 决定试一试,并在 2004 年 11 月 12 日推出其第一次的数独谜题。
数独在伦敦时报 》 的出版是现象的刚刚开始的一种巨大,迅速传遍英国和其附属国的澳大利亚和新西兰。三天以后,每日邮报开始出版题为"Codenumber"的数独谜题。悉尼每日电讯报 》 随后在 2005 年 5 月 20 日。2005 年 5 月底通过拼图定期刊登在很多全国性的报纸,在英国,包括每日电讯报 》、 独立,卫报 》、 太阳和每日镜报 》。
但那不是它。2005 年 7 月通道 4 包括他们 Teletext 服务每日的数独游戏和天空一推出世界上最大数独谜题 — — 275 英尺 (84 米) 的正方形谜题,刻在凿的出生,布里斯托尔附近一座小山的一侧。BBC 电台 4 今天开始读数字在第一的数独游戏电台版朗读。作为大哥哥 Jadegoody 和卡罗尔 · 沃德,她的书如何做数独是畅销书的国家,英国名人有作证其利益作为锻炼心智。即使老师是由政府支持的杂志推荐数独作为大脑锻炼在教室里和已提出建议,解决数独是能够延缓阿尔茨海默氏症等脑疾病条件。
回到曼哈顿
2005 年 4 月数独完成一个完整的圆圈,到达回到曼哈顿作为一项常规功能在纽约邮报 》。在 7 月 11 日,星期一,数独热潮蔓延到美国其他地区每日新闻 》 和今日美国 》 启动在同一天的数独谜题时。在两种情况下数独谜题,而不是传统的填字游戏和桥梁墩柱。
2006 年的数独繁荣发芽了数以百计的益智书籍和杂志,数独俱乐部、 聊天室、 战略书籍、 视频、 手机游戏、 纸牌游戏、 棋类游戏,日历,陈列产品和甚至一数独游戏的电视剧。数独也兴起在数以千计的世界各地的每日报纸和通常在世界媒体描述作为"魔方的 21 世纪"和"世界上增长最快之谜"。
数独的繁荣也萌生了一个巨大的包括较小和较大的网格、 多个重叠网格,网格的对角线和奇数或偶数细胞、 网格具有不规则形状的盒子和更多的变异范围。这些变体中有些是很有趣和世界尖端,维持数独的位置作为最受欢迎的逻辑谜题。
2006 年 3 月,卢卡,意大利举行了第一次世界数独锦标赛 (WSC) 举办的世界谜题联合会 (WPF)。解决后 45 的数独谜题,包括经典的数独、迷你数独、对角线数独、不规则数独、总和数独,数独多, OddEven和其他的变化,在两天期间,赢得比赛,这是由 Jana Tylova,今年 31 岁来自捷克共和国的经济学家。Thomas 斯奈德,26,哈佛大学的研究生,来了第二次同时魏华黄,30,来自加利福尼亚州的一名软件工程师,谷歌工作是季军。
今天,专用和谜杂志掺数独和数独变形由 Conceptis 经常刊载在超过 35 个国家包括美国、 日本、 英国、 德国、 荷兰、 加拿大、 法国、 俄罗斯、 波兰、 芬兰、 丹麦、 以色列、 匈牙利、 奥地利、 西班牙、 挪威、 瑞典、 希腊、 瑞士、 比利时、 意大利、 澳大利亚、 新西兰、 捷克共和国、 巴西、 土耳其、 韩国、 泰国、 罗马尼亚、 菲律宾、 爱沙尼亚、 拉脱维亚、 秘鲁和更多。
:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
友情链接: |
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有 如有不愿意被转载的情况,请通知我们删除已转载的信息。 联系方式:电子邮件:1053406363@qq.com 豫ICP备2023024751号-1 |