仿真技术在光纤通信实验教学中的应用
发布时间:2024-03-13 09:36  

  摘要:本文将Optisystem和Matlab联合仿真技术引入光纤通信实验教学,学生通过虚拟仿真技术,更清晰直观地进行实验,并且节省硬件设备投资,取得良好的教学效果。


  关键词:仿真技术光纤通信实验技术应用


  随着通信技术的迅猛发展,光纤通信作为通信专业的一门重要必修课程,在培养通信人才能力的角色中扮演着越来越重要的作用[1]。光纤通信是一门物理学和通信学的交叉学科,其中涉及很多物理学和通信学科的基础理论和基础知识,这给学生学习掌握好这门课程带来很大的挑战。


  光纤通信作为一门工程学科,不仅仅教授理论内容,其实践内容也占有非常重要的地位。由于资金的限制,电信级的设备无法购入,因此光纤通信实验课基本以试验箱为主,再配合其他测试仪器完成实验教学,这种模式存在诸多问题,比如实验设备具有使用寿命、易老化;实验项目方法单一、缺乏灵活性;很难进行综合性开发、二次开发;难以深入了解其内部工作原理等。随着计算机仿真技术的发展,国内外高校越来越重视该技术在实验教学中的应用,目前各大高校已经陆续开始建设虚拟仿真实验室。本文将Optisystem和Matlab联合仿真技术引入光纤通信实验教学中,不仅克服了传统实验教学的弊端,还带来了实验开设的便利性、重复性、精准性等优势,取得了良好的教学效果。


  stem仿真系统


  Optisystem是加拿大Optiwave公司推出的一款计算机仿真系统[2],主要用于光纤通信系统的器件仿真、系统设计等。Optisystem提供了良好的可扩展性,可与Matlab进行联合仿真,只需要在仿真系统中添加一个Matlab组件即可,使用起来方便简单[3]。在使用Optisystem与Matlab协同仿真的时候,首先要了解Optisystem的信号输入Matlab工作空间的格式。


  其数据格式如图1所示。


  图1Matlab空间数据格式


  由图1(a)可以看出,Optisystem的信号格式包括“TypeSignal”,字符类型,表示该信号的类型为光信号、电信号或二进制信号;“Sampled”,结构体,Optisystem的信号就包含在该字段当中。“Parameterized”,结构体,参数化字段,表示一些与时间平均有关的量,如平均功率、中心波长、偏振态等;“Noise”,结构体,表示噪声数据;“Channels”,表示该信号的波长,是指中心波长。


  如果选择的是频率抽样信号,则Sampled的数据格式如图1(b)所示。如果选择的是时间抽样信号,则Sampled的数据格式如图1(c)所示。到底是时间信号还是频率信号,由具体问题决定。使用Matlab在时域对信号处理时,就选择时域抽样,否则,选择频域抽样。由图1(b)、图1(c)看出,Smapled包含两个字段,一个是Signal字段,该字段是信号在抽样点的值,另一个是Frequency或Time字段,该字段是抽样点的频点或时间点。


  2.频域的Optisystem与Matlab联合仿真


  为了进一步说明Optisystem与Matlab联合仿真技术在光纤通信实验教学中的应用,用以下例子做说明。本部分是频域的联合仿真,第3部分是时域的联合仿真。在本部分的例子中,我们使用Matlab代码,对连续波激光器的输出光谱进行右移1THz的操作。其搭建的Optisystem系统如图2所示。


  图2光谱右移Optisystem系统


  图2中,连续波激光器发出的激光,输入Matlab组件,使用Matlab组件对其进行频移操作。注意:需要把Matlab组件中的“Sampledsignaldomain”设置为“Frequency”,表示在频域采集信号。把Matlab组件中的“RunCommand”设置为Matlab脚本的名字。以下是编写的Matlab脚本代码,名字为frequench_shift.m


  OutputPort1=InputPort1;


  f=ncy;%输入光信号的频谱


  ncy=f+1e+12;%输出光谱频率右移1THz


  使用光谱仪分别测试连续波激光器的输出光谱和经过Matlab组件处理过后的光谱,分别如图3(a)和(b)所示。


  (a)(b)


  图3(a)连续波激光器光谱;(b)Matlab组件输出光谱


  通过比较图3(a)和(b)可以看出,连续波激光器的输出光谱中心频率位于193.1THz处,而Matlab组件的输出光谱位于194.1THz处,这说明光谱被Matlab组件右移了1THz。仅仅使用了三行Matlab代码即实现了频移操作,非常简洁方便有效。


  3.时域的Optisystem与Matlab联合仿真


  在时域的Optisystem与Matlab联合仿真中,以光信号的幅度调制为例。搭建的Optisystem系统如图4所示。


  图4Matlab实现的光信号幅度调制


  在图4中,连续波激光器输出的光信号和调制信号输入Matlab组件,Matlab组件完成对信号的光幅度调制。搭建Matlab组件时,需要设置两个输入端口,其中一个电端口,一个光端口。调制信号采用1Gbit/s的伪随机序列,使用NRZ模块产生1Gbit/s的NRZ格式的伪随机序列。把伪随机序列和连续波激光器输出的光信号同时输入Matlab组件,用来产生幅度调制光信号。对于光信号的幅度调制,其数学表达式为:


  Eout(t)=Ein(t).[modulation(t)]1/2


  其中Eout(t)是输出的光幅度调制信号,Ein(t)是输入的连续波光信号,modulation(t)是调制电信号。


  Matlab脚本代码如下,名字为am.m


  OutputPort1=InputPort1;


  [is,cs]=size(d);


  len=length(d);


  forcounter=1:cs


  d(1,counter).Signal=...


  d(1,counter).Signal.*...


  sqrt(d(1,counter).Signal);


  end


  (a)(b)


  图5(a)伪随机序列时域波形;(b)光幅度调制时域波形


  运行Optisystem系统,进行仿真,仿真结束,使用电域示波器(OscilloscopeVisualizer)观测1Gbit/s的伪随机序列NRZ码时域波形。使用光域示波器(OpticalTimeDomainVisualizer)观测Matlab组件的输出时域波形,如图5所示。


  其中图5(a)是伪随机序列的时域波形,图5(b)是经过Matlab处理之后的光幅度调制时域波形。通过对比图5(a)和(b)可以知道,使用Matlab组件实现的幅度调制器,能够正常地把伪随机序列码调制到光波上,从而实现数字光信号的幅度调制。


  4.结语


  本文以Optisystem和Matlab联合仿真为例,介绍了仿真技术在光纤通信实验教学中的应用。通过频域联合仿真和时域联合仿真两个实例,分析了在Optisystem中如何使用Matlab组件进行联合仿真。使用联合仿真技术,可以大大拓展Optisystem的使用范围,学生通过使用仿真技术,不仅能够把课堂上学习的理论知识应用于实践,知其然也知其所以然,还能够巩固学习效果,提高能力,为培养应用型人才打下良好的基础。


  参考文献: 

  [1]王秋光,张亚林,胡彩云,赵莹琦. OptiSystem仿真在光纤通信实验教学中的应用[J].实验室科学,2015(2). 

  [2]韩力,李莉,卢杰.基于Optisystem的单模光纤WDM系统性能仿真[J].大学物理实验,2015(10). 

  [3]赵赞善,罗友宏,谢娇. Optisystem中Matlab Component模块的扩展应用[J].电信技术,2012(12). 

    作者:油海东

打印此文 关闭窗口
很牛学术网 联系我们 文献下载器
返回顶部
扫一扫